Um pêndulo duplo é exatamente o que parece. É um sistema simples que consiste em um pêndulo com outro pêndulo preso à sua extremidade. O dobro da diversão. Um pêndulo simples sofrerá um movimento oscilatório e chegará ao repouso na posição de equilíbrio. Isso é tão certo quanto o sol nasce no leste, por assim dizer. É totalmente previsível.
Por que o pêndulo duplo e não o pêndulo simples? Um pêndulo simples tem apenas um grau de liberdade. O pêndulo duplo tem dois graus de liberdade. Precisamos de equações diferenciais dependentes das condições iniciais para resolver os movimentos de um pêndulo duplo. Isso nos dá os ingredientes para o caos.
A trajetória do movimento de um pêndulo duplo parece louca... porque meio que é! Para pequenos ângulos, pêndulos duplos também nos dão movimentos harmônicos simples, mas para deslocamentos maiores, este não é o caso.
Podemos descrever o movimento de um pêndulo duplo usando um sistema de equações diferenciais ordinárias através da mecânica lagrangeana. Isso pode parecer confuso para alguns leitores. Se temos as equações de movimento, por que o sistema seria imprevisível? Resolva as equações e podemos prever o movimento dos pêndulos, certo?
O problema é que o sistema do pêndulo duplo é extremamente dependente das condições iniciais. Se não pudermos determinar as condições iniciais com 100% de certeza -e em física, não usamos percentagens levianamente-, não podemos prever o comportamento do sistema.
Como é impossível atingir esse nível de certeza, não podemos prever o movimento de um pêndulo duplo. Dois pêndulos duplos soltos do mesmo ponto simultaneamente terão uma ligeira variação em suas condições iniciais. Isso se traduzirá em uma mudança dramática na trajetória em um tempo muito curto. A variação em seus caminhos aumentará rápida e exponencialmente.
A complexidade de um pêndulo duplo em oposição a um pêndulo único é um pouco como o infame problema dos três corpos. Você pode prever o comportamento de dois corpos que influenciam um ao outro, mas adicione mais um, e o sistema se torna muito complexo.
Um pêndulo duplo é uma das demonstrações mais simples da teoria do caos. Você pode conhecer isso como "efeito borboleta", mas há muito mais do que isso. Uma das características definidoras do caos é a sensibilidade à variação nas condições iniciais.
O ponto a ser observado aqui é que esse sistema é caótico, mas não aleatório. É muito, muito sensível às condições iniciais. Se você tiver dois pêndulos duplos com exatamente as mesmas condições iniciais, eles traçariam o mesmo caminho. O sistema é simplesmente implacável até mesmo com uma pequena mudança. Certamente fará uma montanha de um montículo.
No entanto, na realidade, é impossível liberar dois pêndulos duplos exatamente com as mesmas condições iniciais. Portanto, será impossível prever o caminho que o pêndulo irá traçar.
Nosso mundo compreende vários desses sistemas caóticos e impossíveis de prever. Mesmo nosso sistema solar exibe um comportamento caótico quando você considera períodos de tempo mais longos. Através do exemplo do pêndulo duplo, vemos a teoria do caos em ação e podemos entender como é difícil prever o mundo ao nosso redor!
O MDig precisa de sua ajuda.
Por favor, apóie o MDig com o valor que você puder e isso leva apenas um minuto. Obrigado!
Meios de fazer a sua contribuição:
- Faça um doação pelo Paypal clicando no seguinte link: Apoiar o MDig.
- Seja nosso patrão no Patreon clicando no seguinte link: Patreon do MDig.
- Pix MDig ID: c048e5ac-0172-45ed-b26a-910f9f4b1d0a
- Depósito direto em conta corrente do Banco do Brasil: Agência: 3543-2 / Conta corrente: 17364-9
- Depósito direto em conta corrente da Caixa Econômica: Agência: 1637 / Conta corrente: 000835148057-4 / Operação: 1288
Faça o seu comentário
Comentários